Physical Association and Coordinate Function of the H3 K4 Methyltransferase MLL1 and the H4 K16 Acetyltransferase MOF

نویسندگان

  • Yali Dou
  • Thomas A. Milne
  • Alan J. Tackett
  • Edwin R. Smith
  • Aya Fukuda
  • Joanna Wysocka
  • C. David Allis
  • Brian T. Chait
  • Jay L. Hess
  • Robert G. Roeder
چکیده

A stable complex containing MLL1 and MOF has been immunoaffinity purified from a human cell line that stably expresses an epitope-tagged WDR5 subunit. Stable interactions between MLL1 and MOF were confirmed by reciprocal immunoprecipitation, cosedimentation, and cotransfection analyses, and interaction sites were mapped to MLL1 C-terminal and MOF zinc finger domains. The purified complex has a robust MLL1-mediated histone methyltransferase activity that can effect mono-, di-, and trimethylation of H3 K4 and a MOF-mediated histone acetyltransferase activity that is specific for H4 K16. Importantly, both activities are required for optimal transcription activation on a chromatin template in vitro and on an endogenous MLL1 target gene, Hox a9, in vivo. These results indicate an activator-based mechanism for joint MLL1 and MOF recruitment and targeted methylation and acetylation and provide a molecular explanation for the closely correlated distribution of H3 K4 methylation and H4 K16 acetylation on active genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Histone Methyltransferase Activity of MLL1 Is Dispensable for Hematopoiesis and Leukemogenesis

Despite correlations between histone methyltransferase (HMT) activity and gene regulation, direct evidence that HMT activity is responsible for gene activation is sparse. We address the role of the HMT activity for MLL1, a histone H3 lysine 4 (H3K4) methyltransferase critical for maintaining hematopoietic stem cells (HSCs). Here, we show that the SET domain, and thus HMT activity of MLL1, is di...

متن کامل

An Ash2L/RbBP5 Heterodimer Stimulates the MLL1 Methyltransferase Activity through Coordinated Substrate Interactions with the MLL1 SET Domain

Histone H3 lysine 4 (K4) methylation is a prevalent mark associated with transcription activation and is mainly catalyzed by the MLL/SET1 family histone methyltransferases. A common feature of the mammalian MLL/SET1 complexes is the presence of three core components (RbBP5, Ash2L and WDR5) and a catalytic subunit containing a SET domain. Unlike most other histone lysine methyltransferases, all ...

متن کامل

WDR5 Associates with Histone H3 Methylated at K4 and Is Essential for H3 K4 Methylation and Vertebrate Development

Histone H3 lysine 4 (K4) methylation has been linked to the transcriptional activation in a variety of eukaryotic species. Here we show that a common component of MLL1, MLL2, and hSet1 H3 K4 methyltransferase complexes, the WD40-repeat protein WDR5, directly associates with histone H3 di- and trimethylated at K4 and with H3-K4-dimethylated nucleosomes. WDR5 is required for binding of the methyl...

متن کامل

Involvement of human MOF in ATM function.

We have determined that hMOF, the human ortholog of the Drosophila MOF gene (males absent on the first), encoding a protein with histone acetyltransferase activity, interacts with the ATM (ataxia-telangiectasia-mutated) protein. Cellular exposure to ionizing radiation (IR) enhances hMOF-dependent acetylation of its target substrate, lysine 16 (K16) of histone H4 independently of ATM function. B...

متن کامل

MLL/SET1 Complex: From Yeast to Human

Copyright: © 2012 Cao F. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The past decade witnessed the significant advancement of our knowledge in chromatin biology. Histone post-translational modifications ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2005